Validating a Physics-Based Automatic Classification Scheme for Impact Echo Signals on Data Using a Concrete Slab with Known Defects
نویسندگان
چکیده
Impact echo (IE) is capable of locating subsurface defects in concrete slabs from the vibrational response slab to a mechanical impact. For an intact (“good” condition), frequency spectrum IE dominated by single peak corresponding slab’s “thickness resonance frequency,” whereas presence (“fair” or “poor” conditions) could manifest various ways such as multiple distinct peaks at frequencies higher, lower, than thickness resonance. In previous research, authors have proposed partitioning for signal classification. Firstly, band identified using data-driven approach and then signals are represented their energy distribution three bands—frequencies less than, within, greater Following this feature extraction, unsupervised clustering used identify centroids each class—good, fair, poor—which further classify any test into one aforementioned classes. The classification developed training on unlabeled real bridge deck data (the Federal Highway Administration’s [FHWA’s] InfoBridge dataset) without making use labeled data. This study aims validate methodology dataset eight reinforced specimens constructed FHWA Advanced Sensing Technology Nondestructive Evaluation laboratory having known artificial defects. Our findings indicate that physics-based definition method robust can with moderate accuracy.
منابع مشابه
task-based language teaching in iran: a mixed study through constructing and validating a new questionnaire based on theoretical, sociocultural, and educational frameworks
جنبه های گوناگونی از زندگی در ایران را از جمله سبک زندگی، علم و امکانات فنی و تکنولوژیکی می توان کم یا بیش وارداتی در نظر گرفت. زبان انگلیسی و روش تدریس آن نیز از این قاعده مثتسنی نیست. با این حال گاهی سوال پیش می آید که آیا یک روش خاص با زیر ساخت های نظری، فرهنگی اجتماعی و آموزشی جامعه ایرانی سازگاری دارد یا خیر. این تحقیق بر اساس روش های ترکیبی انجام شده است.پرسش نامه ای نیز برای زبان آموزان ...
Automatic Classification of Impact-Echo Spectra II
INTRODUCTION We study the application of artificial neural networks (ANNs) to the classification of spectra from impact-echo signals. In this paper we focus on analyses from experiments. Simulation results are covered in paper I. Impact-echo is a procedure from Non-Destructive Evaluation where a material is excited by a hammer impact which produces a response from the material microstructure. T...
متن کاملAutomatic Classification of Impact-Echo Spectra I
We investigate the application of artificial neural networks (ANNs) to the classification of spectra from impact-echo signals. In this paper we provide analyses from simulated signals and the second part paper details results of lab experiments. The data set for this research consists of sonic and ultrasonic impact-echo signal spectra obtained from 100 3D-finite element models. These spectra, a...
متن کاملdesigning and validating a textbook evaluation questionnaire for reading comprehension ii and exploring its relationship with achievement
در هر برنامه آموزشی، مهم ترین فاکتور موثر بر موفقیت دانش آموزان کتاب درسی است (مک دونو و شاو 2003). در حقیقت ، کتاب قلب آموزش زبان انگلیسی است( شلدن 1988). به دلیل اهمیت والای کتاب به عنوان عنصر ضروری کلاس های آموزش زبان ، کتب باید به دقت ارزیابی و انتخاب شده تا از هرگونه تاثیر منفی بر دانش آموزان جلوگیری شود( لیتز). این تحقیق با طراحی پرسش نامه ارزیابی کتاب که فرصت ارزیابی معتبر را به اساتید د...
15 صفحه اولSemi-Supervised Bayesian Classification of Materials with Impact-Echo Signals
The detection and identification of internal defects in a material require the use of some technology that translates the hidden interior damages into observable signals with different signature-defect correspondences. We apply impact-echo techniques for this purpose. The materials are classified according to their defective status (homogeneous, one defect or multiple defects) and kind of defec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transportation Research Record
سال: 2023
ISSN: ['2169-4052', '0361-1981']
DOI: https://doi.org/10.1177/03611981231173649